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Abstract—This paper presents estimation of reconstruction error due to jitter of Gaussian Markov Processes. Two samples are considered 

for the analysis in two different situations. In one situation, the first sample does not have jitter while the other one is effected by jitter. 

In the second situation, both the samples are effected by jitter. The probability density functions of the jitter are given by Uniform 

Distribution and Erlang Distribution. Statistical averaging is applied to conditional expectation of random variable of jitter. From that, 

conditional variance is obtained which is defined as reconstruction error function and by knowing that, the reconstruction error of a 

Gaussian Markov Process is determined. 
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I.  INTRODUCTION 

A Gaussian Markov process is the process which satisfies the 
requirements of both Gaussian and Markov processes. These are 
the stochastic processes that are desired to be recovered. While 
variation in the precise location of sampling instants Tn is 
referred to as Jitter. Thus the sampling instants become random 
too. 

The work on the reconstruction problem of a function was 
first done in the year 1957 by A.V. Balakrishnan [1] in which he 
tried to reconstruct a Wide Sense Stationary process. Later on in 
the year 1962, the same author worked on the reconstruction of 
random processes with jitter [2]. The same work was then 
continued by Brown [3]. 

Later on, the work of Balakrishnan and Brown were 
generalized by B. Liu and T. P. Stanley. Their work includes 
calculation of error bounds introduced because of jitter in the 
sampling stage. 

Most of the researchers in their articles like W. M. Brown 
[3], B. Liu et.al [4], M. Shinagawa et.al [5], Kurosawa et.al [6], 
A. Tarczynski et.al [7], C. Feng et.al [8], B. Atakan [9], E. Van 
der Onderaa and J. Renneboog [10], P. Marziliano and M. 
Vatterli [11], N. Da Dalt, et.al [12] have claimed that the best 
way to reconstruct from samples in the presence of jitter in 
sampling instants is the way so defined in [2]. In all of the stated 
research articles, the signal was defined to be real and stationary 
in the wide sense and its power spectral density (PSD) 
disappears outside the range of angular frequency (-ωb, ωb) 
whereas ωb = 2πW. 

There are some principal drawbacks of majority mentioned 
publications: 

1) The number of samples is equal to infinity,

2) The information about the probability density function
(pdf) of the sampled process is not used, 
3) All samples have the same jitter distribution.

In this article Conditional Expectation is referred to as ideal 
algorithm for the reconstruction of Gaussian processes. With 
this approach being applied, new aspects of the problem are 
investigated: 

1) The number of samples are arbitrary.
2) The covariance function of the random process is taken
into use, without any concern of its power spectral density 
being bandlimited or not. 
3) The reconstruction error function is represented on the
whole time domain, thus a greater detail of the reconstruction 
error of a process between any sampling intervals is 
obtained. 

II. PROPOSED METHODOLOGY

Let a non-stationary random process x(t) which is discretized in 

time instants τ = (τ1, τ2, …, τN). Thus we obtain a multiple 

samples of the process x(τ), where the number of samples N and 

sampling instants τ are arbitrary. And so we get a new random 

process having conditional probability density function f(x), 

and central moments depending upon each sample value.  

𝑓(𝑥(𝑡)|𝑋, 𝜏) = 𝑓(𝑥(𝑡)|𝑥(τ1), x(τ2), … , x(τ𝑁)), (1) 

In case of arbitrary pdfs, there exist a statistical approach 

referred to as conditional expectation which promises minimum 

error of estimate. Following this approach, the conditional 

expectation also known as the conditional mean function is used 

as reconstruction function while conditional variance function 

is used as reconstruction error function. In case of Gaussian 
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processes, the covariance function 𝐾(τ𝑖 , τ𝑗) is widely used. The

conditional expectation and variance of a non-stationary 

Gaussian process are given below: 

�̃�(𝑡) = 𝑚(𝑡) + ∑ ∑ 𝐾𝑥
𝑁
𝑗=1 (𝑡, τ𝑖)𝑎𝑖𝑗[𝑥(τ𝑖) − 𝑚(τ𝑗)]𝑁

𝑖=1  (2) 

�̃�2(𝑡) = 𝜎(𝑡) − ∑ ∑ 𝐾𝑥(𝑡, τ𝑖). 𝑎𝑖𝑗𝐾𝑥(τ𝑗, 𝑡)𝑁
𝑗=1

𝑁
𝑖=1 (3) 

Whereas the term 𝑎𝑖𝑗  represents each term of the inverse

covariance matrix: 

𝐴 = [
𝐾𝑥(τ1, τ1) ⋯ 𝐾𝑥(τ1, τ𝑁)

⋮ ⋱ ⋮
𝐾𝑥(τ𝑁 , τ1) ⋯ 𝐾𝑥(τ𝑁 , τ𝑁)

]

−1

(4) 

The expressions (2) and (3) depend on the current number of 

sample j, on the total number of samples N, on the set of 

arbitrary sampling instants 𝜏𝑖, on the covariance moment

among process sections at the instants 𝜏𝑖 and 𝜏𝑗 and on the

covariance moment 𝐾𝑥(𝑡, τ𝑖) among the current sections of the

time t. 

Conditional expectation is used directly in case of 

known or definite sampling instants. But in case of jitter, when 

the sampling instants are not known, but random then statistical 

average with respect to the pdf of jitter is applied to the above 

stated rule in order to estimate the conditional functions. 

With the help of this rule, and having the number of 

samples N finite, the reconstruction of a random process inside 

the sampling region and outside the sampling region can be 

described. 

III. JITTER

In this paper the sampling instants i.e.�̃� are random because 
of presence of jitter. Also the jitter present in each sample isn’t 
necessary to be the same as it can variate from sample to sample. 
Thus the pdf of jitter in each sample differ from each other. The 
pdfs of the jitter considered in this article are uniform or 
rectangular distribution as shown in figure 1, 

𝑓(�̃�) = {

0 , �̃� < 𝑎
1

𝑏−𝑎
 , 𝑎 ≤ �̃� ≤ 𝑏

0, �̃� ≥ 𝑏

, (5) 

Figure 1. pdf of Uniform Distribution 

and the Erlang distribution [13]. Erlang Distribution was 
developed by A. K. Erlang to examine the number of telephone 
calls which might be made at the same time to the operators of 
the switching stations. This work on telephone traffic 
engineering has been expanded to consider waiting times in 
queueing systems in general. The distribution is now used in the 
fields of stochastic processes and of biomathematics. It can be 
used to model the time to complete n operations in series, where 
each operation requires an exponential period of time to 
complete. The pdf of Erlang distribution is shown in figure 2 and 
its mathematical form is given below: 

𝑓(�̃�) = 𝜆 . 𝑒−𝜆�̃� .
(𝜆�̃�)𝑘−1

(𝑘−1)!
 , 𝜆, 𝜏 ̃ ≥ 0 (6) 

 Erlang distribution has two parameters as seen in the pdf, k 
and 𝜆. The k parameter is referred to as the shape parameter 
while the 𝜆 is referred to as the rate parameter. When the value 
of shape parameter k equals 1, it takes the form of exponential 
distribution. 

 An alternative, but equivalent, parametrization uses the scale 
parameter µ which is the reciprocal of the rate parameter (i.e. µ 
=1/ 𝜆). 

Figure 2. pdf of Erlang Distribution 

Two different cases are considered. 1) When the first sample 
is definite while the other sample has jitter i.e. the position of the 
second sample is random �̃�. 2) When both the samples have jitter 
i.e. both the sampling instants are random variables. 

For the first case, the average reconstruction function which 
is the average conditional expectation depends upon the pdf of 
the jitter present in the second sample 𝑓(�̃�), so we get:  

〈�̃�2(𝑡)〉 = ∬ �̃�2(𝑡). 𝑓(�̃�2)𝑑�̃�2 (7) 

For the second case, the average conditional expectation 
depends upon the pdfs of jitter of both samples i.e. 𝑓(�̃�1), 𝑓(�̃�2).
Thus the average reconstruction error is calculated as follows: 

〈�̃�2(𝑡)〉 = ∬ �̃�2(𝑡). 𝑓(�̃�1) 𝑓(�̃�2) 𝑑�̃�1 𝑑�̃�2 (8) 

In this article, the random process used throughout is obtained at 
the output of a low pass RC filter with white noise as the input. 
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Thus a Gaussian Markov process well defined by the covariance 
function given below is obtained: 

𝐾(τ𝑖 , τ𝑗) = 𝜎2 . 𝑒−𝛼|τ𝑖,τ𝑗| (9) 

Whereas α=1/RC. In the said filter, the value of α is assumed to 
be 1, so that the covariance time has a value 1. 

Figure 3. Reconstruction Error Function with both samples 
having no Jitter. 

IV. EXAMPLES

The conditional expectation also referred to as conditional mean 
defines the conditional variance which is defined as the 
reconstruction error function. 

 Here, in all the examples considered, the two sampling 
instants taken are at 0 and 0.5. While the covariance time used 
is 1. 

 The reconstruction error function without any jitter as 
defined by (3) is represented in the figure 3. From the figure it is 
visible that the function is defined on the whole time domain. 
Also it can be seen that the reconstruction error at sampling 
points have value 0 as at these points the value of the process is 
exactly known. While exactly in the center of both the sampling 
intervals, the value of the reconstruction error is maximum 
which is obvious as there is greater uncertainty about the exact 
value of the process at this instant. 

 On the basis of (7), (8) a set of examples are presented to 
clearly show the effect of jitter during reconstruction. These 
expressions describe the average reconstruction function with 
random sampling intervals. 

The multiple scenarios we have considered are as follows: 

 One sample with random sampling intervals.

o The jitter of the sample described by uniform
pdf.

o The jitter of the sample described by Erlang
Distribution function.

 Both the samples with random sampling intervals with
jitter defined by Uniform pdf.

o Both samples having same jitter.

o Both samples with different jitter.

A. When the second sample has random sampling instant i.e 

it has jitter which is defined by Uniform Probability 

Distribution 

In this case, the process is carried out with the help of average 

reconstruction error function (7). The second sampling instant 

is effected by jitter represented by ε2, thus the sampling instant 

becomes: 

�̃�2 = 𝜏2 + 𝜀2 (10) 

The random variable 𝜀2 in this case is defined by Uniform

Probability Density Function and is limited between the interval 

of 0.05seconds on either side of the sampling point. So �̃�2

becomes as shown in (11): 

[�̃�2 − 0.05, �̃�2 + 0.05] = [0.45,0.55] (11) 

The reconstruction error function is shown in figure 4. In the 

figure it can be seen that the reconstruction estimate is erroneous 

only in the region where there is effect of jitter i.e. between 0.45 

and 0.55. As compared with the original samples without jitter, 

the jitter in here causes 5% error in the sample. 

B. When the jitter of the second sample is defined using Erlag 

Distribution 

In this scenario, the jitter in the second sample is described 

using Erlang Distribution. 

For instance four different distributions are used 

having the following values. 

Figure 4. The reconstruction error function when one sample 

is without jitter and the other sample have the presence of 

jitter defined by Uniform pdf. 
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𝑘 = 1, 𝜆 = 85 

𝑘 = 2, 𝜆 = 85 

𝑘 = 2, 𝜆 = 65 

𝑘 = 2, 𝜆 = 45 

The pdfs of the jitter is given in figure 5. The reconstruction 

error function is shown in figure 06. Where it is clearly visible 

that the maximum error between all the four different samples 

is different in both values and position. 

It is because of the difference between average 

distances of the samples. Also, with the increase in this 

difference, the maximum error which lies exactly in middle of 

the two sampling points where the uncertainty is maximum 

increases. Also, from the figure, it is clear that the error is 

effecting the value at the sampling instant too with the variance 

of the jitter. 

C. When both the samples have same jitter defined by 

Uniform Distribution Function 

In this case, the jitter is present in both the samples, defined by 

Uniform Distribution. The jitter is exactly the same. In order to 

clarify the case in a more better form, three different jitter 

widths are taken with the following limits. 

o [-0.025, 0.025] i.e. total width = 0.05.

o [-0.05, 0.05] i.e. total width = 0.1.

o [-0.1, 0.1] i.e. total width = 0.2.

These widths are represented using blue, green and red dotted 

line in figure 7. 

Figure 7 gives reconstruction error function for each of the jitter 

width in both samples. From this example, it is clear that the 

error increases with the increase in jitter width as it makes the 

exact value of sample at the sampling instant more uncertain. 

Figure 5. Four different Jitters represented by Erlang 

distribution of different parameters 

Figure 6. Reconstruction Error Function when one sample has 

jitter defined by Erlang distributions of different parameters as 

shown in figure 5. 

D. When both the samples have jitter of different widths 

defined by Unifrom Distribution Function 

And lastly the case when both the samples have different jitter 

widths, well described by Uniform Probability Density 

Function is studied. The jitter width of the first sample is [-

0.025, 0.025] with total width of 0.5 while the width of the jitter 

of the other sample is [-01, 0.1] of total width 0.2. 

The reconstruction error function is given in figure 8. 

Where it can be seen that error in the sample with smaller jitter 

width is small as compared to the other one of larger jitter 

width. 

From this example, it can be concluded that the 

characterization of jitter of samples with different distributions 

is also possible. 
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Figure 7. Reconstruction Error Function when both the 

samples have jitter of same width at a time. This figure depicts 

three different cases at a time.  

V. CONCLUSION 

From this paper, it can be concluded that the conditional 

expectation or conditional mean rule permit us to depict the 

sampling-reconstruction process for Gaussian Markov 

processes where there is or not the presence of jitter in the 

sampling instants. With this, it is conceivable to study that how 

the reconstruction of the signal from its samples is influenced 

on the whole time domain in presence of jitter. It was shown 

that it is conceivable to bring the investigation under different 

distinctive cases, for instance: when there is no jitter; when just 

a single sample has jitter; when both samples have jitter with 

the same or different pdf of different distribution functions. 

Shortly, the reconstruction error increases with the increase in 

jitter. 

Figure 8. Reconstruction Error Function when both the 

samples have jitter of different widths represented by Uniform 

Probability Density Function. 
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