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I. INTRODUCTION 
 

In many applications of business and engineering, 

multiple and often conflicting objectives need to be 

simultaneously optimized. For a computer engineer, the 

placing of more electronic components on a chip while 

minimizing that chip area and power loss are conflicting 

objectives [8]. The overall benefit usually gained with 

Multi-objective Optimization (MO) is the achieving of 

most valuable outcome for the organization as a whole 

along with due consideration of the requirements of all 

stakeholders.  

MO Problems (MOPs) are in fact more challenging to 

solve, compared to Single-objective Optimization, 

because they have no unique solution; rather, there is a 

set of acceptable trade-off optimal solutions, called 

Pareto front (in the objective space).  However the 

launch of intelligent meta-heuristic algorithms had made 

it possible to solve MOPs in a better way. Among the 

most significant meta-heuristic search techniques 

include population-based methods like Genetic 

Algorithms [9,10] (an Evolutionary Computation 

method) and Particle Swarm Optimization [10,11] 

(based on Swarm Intelligence). The two important goals 

of Multi-Objective Evolutionary Algorithms (MOEAs) 

are the convergence to the true Pareto-optimal (trade-off) 

solutions and a wide diversity among the solutions [8, 

12, 13, 14].   

However the performance of these algorithms is 

unsatisfactory in solving many-objective problems. 

Many-objective optimization problems (MaOPs) are the 

MOPs with more than three objectives. For instance, the 

design of an electric motor involves satisfying at least 

seven objectives simultaneously. These include the size 

or weight of the machine, material cost, maximum or 

average torque, torque ripple and efficiency or losses 

(core and copper). As another example, the Software 

Refactoring problem typically needs the optimization of 

around 15 distinct quality metrics [15]. Among the 

various reasons cited for this inefficiency is the 

non-suitability of conventional variation operators of 

intelligent meta-heuristics in generating solutions that 

achieve the convergence goal satisfactorily. The two 

conventional genetic variation operators on 

chromosomes (candidate solutions) are the crossover 

that facilitates the exchange of information between 

individual candidate solutions and mutation that 

introduces genetic diversity into the candidate solutions. 

Essentially the overall performance heavily depends on 

the suitability of the variation operator with respect to 

the solution representation, selection mechanism and the 

problem nature. Unquestionably, the choice of suitable 

variation operators and the tuning of their parameters, 

which is a formidable task, are extremely important 

[16].  

Many recent studies have insinuated the need for new 

variation operators as well as using their systematic 

combination to enhance their search ability for solving 

MaOPs. Accordingly the main objective of this review 

paper is to give short description of the various attempts 
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made so far in this particular problem solving approach 

along with future research directions.  

The rest of the paper is organized as follows. Section 

2 elaborates on the issue of parameter control for 

adapting the behavior of variation operators to better 

suit the nature of the problem at hand. Section 3 

describes the adaptive operator selection approach to 

dynamically select the operator showing promising 

performance at a particular time step. Section 4 covers 

some experimental results illustrating the impact of 

parameter variation on the performance of genetic 

algorithms. Conclusive remarks are finally covered in 

section 5.   

 

II. ROLE OF PARAMETER CONTROL 
 

Two major issues in using Evolutionary Algorithms 

(EAs), including MOEAs, are the setting of a number of 

control parameters and selecting genetic operators to 

which the algorithm performance is often very sensitive. 

The parameter setting is problem-specific task; people 

from other domains often require the consultation of EA 

experts for proper setting in their problems. For this 

reason, automatic parameter and operator configuration 

has been a very important and active research topic in 

the EA community [19].  

A classification proposed in [17] classifies parameter 

setting into two types. One is for parameter tuning and 

the other is for parameter control. The former is a static 

approach that calculates the parameter values based on 

statistics gathered from several past runs that remain 

fixed while solving for a new instance. Parameter 

control methods dynamically adjust the parameter 

values at run-time for good performance.   

These two problems are clearly related, but carry 

important differences. Theoretically speaking, the 

tuning problem is the stationary while the control 

problem is the non-stationary side of the same coin. 

From a practical perspective, tuning is indispensable for 

EA users, since no EA can be executed without giving 

some value to its parameters. There are very good 

parameter tuning methods developed and published in 

the last decade and the EC community is increasingly 

adopting them. For parameter control, the situation is 

quite different. The control problem is yet to be solved 

although the various advantages of control have been 

already identified in the past:  

o It allows the EA to use appropriate parameter 

values in different stages of the search process. (e.g., 

search by big jumps in the beginning, fine tune the 

near-optimal solutions by small steps in the last stage of 

the search.)  

o It allows the EA to adjust to the changing fitness 

landscapes when facing dynamic problems.  

o It allows the EA to collect information about the 

fitness landscape during the search and use the 

accumulating information to improve performance in 

later stages.  

o Using a parameter control mechanism also solves 

the tuning problem as it relieves the user from the task 

of choosing parameter values.  

Parameter control methods can be further classified 

as deterministic control, adaptive control and 

self-adaptive control depending on the manner of 

adaptation.  

Deterministic methods are uninformed; they follow a 

predetermined problem-specific schedule (or rules) for 

assigning new parameter values. Parameter values are 

predefined functions of time. Adaptive methods are 

informed as they receive feedback from the previous EA 

runs and assign values based upon that feedback. 

Parameter values are predefined functions of the whole 

history of the run. Self-adaptive methods encode 

parameter values in the genetic contents (in the 

chromosomes) along the solutions and allow them to 

co-evolve with the problem solutions. Note that this 

notion of self-adaptation is generic. It can concern any 

parameter and its use is not limited to denote the 

specific strategy used in ES to control the mutation step 

sizes.  

While deterministic control suffers from the same 

problems as static control (finding the optimal 

pre-defined functions would require parameter tuning), 

self-adaptive and adaptive control have met some 

success over the years, but only in very specific 

domains, like in the framework of continuous parameter 

optimization.  

One key objective of Parameter Control is thus to 

propose generic methods for the control of 

representation independent parameters: i) population 

size, ii) selection mode and parameters, iii) variation 

operator probabilities.  

        

III. ADAPTIVE VARIATION OPERATOR  
 

AOS is an increasingly popular approach to 

adaptively select operators for generating a new solution 

during the search. It calculates the application rates of  
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Fig. 1 Illustration of the FIFO sliding window structure 

 

different operators in an online manner based on their 

recent performances within an optimization process. 

AOS involves two major tasks: the credit assignment 

and the operator selection. The former defines how to 

reward an operator based on its recent performance 

(usually based on fitness improvements) in the search 

process, while the latter uses these rewards to decide 

which operator should be applied next [18,19]. The 

combination of this operator selection and the credit 

assignment schemes constitutes the AOS method named 

fitness-rate-rank-based multi-armed bandit FRRMAB 

[19]. The incorporation of AOS in MOEAs has not been 

very successful so far; the main reason being the 

difficulty in quantitatively measuring the fitness 

improvement in most Pareto-dominance based MOEAs. 

Multiobjective evolutionary algorithm based on 

decomposition (MOEA/D) decomposes a MOP into a 

number of scalar optimization subproblems and 

optimizes them simultaneously. Thus, it is natural and 

feasible to use AOS in MOEA/D. We elaborate several 

important issues in using FRRMAB in MOEA/D.  

 

A. Credit Assignment  
The most commonly used metric in credit assignment 

for measuring the quality of an operator is based on the 

fitness improvement obtained by a new solution, 

compared with a given baseline solution. In [20], for 

instance, the best solution of the current population is 

considered baseline, while in [21] the offspring’s parent 

is used for comparison. In credit assignment, one needs 

to address the following two issues: 

a) how to measure the impact in the search process 

caused by the application of an operator;  

b) how to assign an appropriate credit value to an 

operator based on this measured impact.  

As for the first issue, the most commonly used 

approach is to directly use the raw values of the fitness 

improvements caused by the recent uses of the operator 

under assessment. However, the range of raw fitness 

improvements varies from problem to problem and even 

at the different stages of an optimization process. It is 

common that the raw fitness improvement value is 

much larger at early stages than at later ones. Therefore 

the direct use of raw fitness improvement could 

deteriorate the algorithm’s robustness. To alleviate this 

problem, method proposed in [19] uses the fitness 

improvement rates (FIR). More specifically, the FIR 

achieved by an operator i at time point t is defined as 

 
Where pfi,t is the fitness value of the parent, and cfi,t is 

the fitness value of the offspring.  

A sliding window with fixed size W is used to store 

the FIR values of the recently used operators. It is 

organized as a first-in, first-out (FIFO) queue, i.e., the 

FIR value of the most recently used operator is added at 

the tail of the sliding window, while the oldest record 

(the item at the head of the queue) is removed to keep 

the window size constant. Fig. 1 [19] illustrates the 

structure of a sliding window. Each slot in the sliding 

window stores two components:  

1) the index of the operator op used;  

2) its FIR value.  

The major reason for using the sliding window is that, 

in dynamic AOS environments, the performance of an 

operator in a very early stage may be irrelevant to its 

current performance. The sliding window ensures that 

the stored FIR information is for the current situation of 

the search.   

To address the second issue set at the outset of this 

subsection, we first compute Rewardi, the sum of all 

FIR values for each operator i in the current sliding 

window. Then, we rank all these Rewardi values in a 

descending order. Let Ranki be the rank value of 

operator i, inspired by other recently proposed 

rank-based credit assignment schemes [22, 23], and to 

give more chances to the best operators, we introduce a 

decaying factor D ∈ [0, 1] to transform Rewardi to  

Decayi = D
Ranki 

× Rewardi                                 (1) 

Then, we assign the following credit value to operator 

i:  

 
Clearly, the smaller the value of D, the larger the 

influence for the best operator. Fig. 2 [19] illustrates 

FRR versus Rank with three different values of D in a 

case of 15 distinct rank values.  

 

B. Operator Selection 
 

Guided by the reward values, operator selection 

methods select operators for generating new solutions. 

The operator selection problem can be regarded as an 

instance of the Exploration vs Exploitation dilemma: 

one should exploit the operators-set by selecting good 

operators as often as possible, while also doing some 

exploration to give chances to poor operators since they 

may become better in the future search.  
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Fig. 2 Comparison between different decaying 

mechanisms 
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Fig. 3 Pareto-front for 2-objective problem with 

crossover probability pc=0.85 
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Fig. 4 Pareto-front for 2-objective problem with 

crossover probability pc=0.90 

f2


 

 
 f1  

Fig. 5 Pareto-front for 2-objective problem with 

crossover probability pc=0.95

Bandit-based operator selection has received much 

attention in recent studies. A multi-armed bandit 

involves K independent arms (equivalent to variation 

operators or strategies in the AOS literature). The i-th 

arm is characterized by its (fixed, unknown) reward 

probability pi (pi ∈ [0, 1]). An optimal arm selection 

strategy is the one that maximizes the cumulative 

reward along time. Many MAB algorithms have been 

proposed to tackle this problem. Most of the recent ones 

are based on the UCB algorithm [24], which provides 

asymptotic optimality guarantees. In an UCB-based 

MAB algorithm, the ith arm has an empirical quality 

estimate     and a confidence interval that depends on 

the number of times ni it has been tried before. At each 

time point t, the arm maximizing the following function 

is selected:  

 

The scheme in [19] is similar to the original UCB 

algorithm [24]. The major difference is that we use FRR 

values as the quality index instead of the average of all 

the rewards received so far for an operator. In addition, 

ni indicates the number of times operator i has been 

selected in the recent W applications. It is worth noting 

that no operator has yet been applied at the beginning of 

the search; thus, we give each operator an equal chance 

to be selected in this case. FRRMAB is not employed 

until each operator has been applied at least once.  

Recent empirical studies [19] on five-objective 

instances of test problems (WFG1, WFG8 and WFG9) 

have shown that FRRMAB has improved the abilities of 

MOEA/D for dealing with MaOPs. 

 

IV. EXPERIMENTAL STUDIES 
 

The impact of parameter variation was investigated in 

MATLAB on a two-objective minimization problem. 

The two objectives on two decision variables x1 and x2 

are defined as follows:-  

f1(x) = x1
4
 – 10x1

2
 + x1x2 + x2

4
 – x1

2
x2

2
 

f2(x) = x2
4
 – x1

2
x2

2
 + x1

4
 + x1x2 

The parameter selected for variation was crossover 

probability, pc. The pareto-fronts obtained for different 

values of pc are shown below in figures 3, 4 and 5. The 

graphs indicate that pareto-front with pc=0.90 is more 

regular with less fluctuations than the front at pc=0.85 

and pc=0.90. However the appropriate value of pc 

depends mainly on the nature of the problem.  
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V. CONCLUSION 
 

This paper has emphasized the importance of 

parameter control and adaptive selection of variation 

operators for efficiently solving many-objective 

optimization problems. The self-adaptive and adaptive 

parameter controls have shown successes in recent past. 

Adaptive operator selection on the other hand involves 

credit assignment and operator selection. Numerous 

techniques have been proposed for both these processes 

in AOS. This paper studied the issues in incorporating 

FRRMAB in MOEA/D. In summary, the AOS approach 

needs further enhancement and sophistication. 

Furthermore it still needs to be applied to the 

state-of-the-art MaOPs including NSGA-III [6] (and its 

variants) and indicator-based MOEAs.   
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