
2016 1st International Electrical Engineering Congress (IEEC 2016)

May. 13-14, 2016 in IEP Centre, Karachi, Pakistan

1

I. INTRODUCTION

In many applications of business and engineering,

multiple and often conflicting objectives need to be

simultaneously optimized. For a computer engineer, the

placing of more electronic components on a chip while

minimizing that chip area and power loss are conflicting

objectives [8]. The overall benefit usually gained with

Multi-objective Optimization (MO) is the achieving of

most valuable outcome for the organization as a whole

along with due consideration of the requirements of all

stakeholders.

MO Problems (MOPs) are in fact more challenging to

solve, compared to Single-objective Optimization,

because they have no unique solution; rather, there is a

set of acceptable trade-off optimal solutions, called

Pareto front (in the objective space). However the

launch of intelligent meta-heuristic algorithms had made

it possible to solve MOPs in a better way. Among the

most significant meta-heuristic search techniques

include population-based methods like Genetic

Algorithms [9,10] (an Evolutionary Computation

method) and Particle Swarm Optimization [10,11]

(based on Swarm Intelligence). The two important goals

of Multi-Objective Evolutionary Algorithms (MOEAs)

are the convergence to the true Pareto-optimal (trade-off)

solutions and a wide diversity among the solutions [8,

12, 13, 14].

However the performance of these algorithms is

unsatisfactory in solving many-objective problems.

Many-objective optimization problems (MaOPs) are the

MOPs with more than three objectives. For instance, the

design of an electric motor involves satisfying at least

seven objectives simultaneously. These include the size

or weight of the machine, material cost, maximum or

average torque, torque ripple and efficiency or losses

(core and copper). As another example, the Software

Refactoring problem typically needs the optimization of

around 15 distinct quality metrics [15]. Among the

various reasons cited for this inefficiency is the

non-suitability of conventional variation operators of

intelligent meta-heuristics in generating solutions that

achieve the convergence goal satisfactorily. The two

conventional genetic variation operators on

chromosomes (candidate solutions) are the crossover

that facilitates the exchange of information between

individual candidate solutions and mutation that

introduces genetic diversity into the candidate solutions.

Essentially the overall performance heavily depends on

the suitability of the variation operator with respect to

the solution representation, selection mechanism and the

problem nature. Unquestionably, the choice of suitable

variation operators and the tuning of their parameters,

which is a formidable task, are extremely important

[16].

Many recent studies have insinuated the need for new

variation operators as well as using their systematic

combination to enhance their search ability for solving

MaOPs. Accordingly the main objective of this review

paper is to give short description of the various attempts

Performance Gaining for solving Many-objective Optimization Problems using

Variation Operators

Syed Zaffar Qasim
1
 and Muhammad Ali Ismail

2*

1,2
 High Performance Computing Centre, Department of Computer & Information Systems Engineering,

NED University of Engineering and Technology,

Karachi, 75290, Pakistan
1
zafarqas@neduet.edu.pk,

2
maismail@neduet.edu.pk

Abstract: The recent years have witnessed phenomenal growth of interest in solving many-objective optimization

problems. Many-objective Optimization Problems (MaOPs) are the Multi-objective Optimization Problems (MOPs)

with typically more than three objectives. For instance, the designing of an electric motor involves satisfying at least

seven objectives simultaneously. These include the size or weight of the machine, material cost, maximum or average

torque, torque ripple and efficiency or losses (core and copper). In general, some of these objectives are at odds with

each other. Among the various reasons cited for this inefficiency is the non-suitability of conventional variation

operators of intelligent meta-heuristics in generating solutions that attain the convergence goal satisfactorily. Many

latest studies have asserted the need for developing new variation operators as well as using their systematic

combination to augment their search performance for solving MaOPs. Accordingly the main objective of this review

paper is to give short description of the various significant attempts in this particular problem solving approach along

with future research directions.

Keywords: Many-objective optimization, Parameter control, Adaptive operator selection, Multi-armed Bandit.

mailto:zafarqas@neduet.edu.pk
file:///D:/IEEC/paper/maismail@neduet.edu.pk

2

made so far in this particular problem solving approach

along with future research directions.

The rest of the paper is organized as follows. Section

2 elaborates on the issue of parameter control for

adapting the behavior of variation operators to better

suit the nature of the problem at hand. Section 3

describes the adaptive operator selection approach to

dynamically select the operator showing promising

performance at a particular time step. Section 4 covers

some experimental results illustrating the impact of

parameter variation on the performance of genetic

algorithms. Conclusive remarks are finally covered in

section 5.

II. ROLE OF PARAMETER CONTROL

Two major issues in using Evolutionary Algorithms

(EAs), including MOEAs, are the setting of a number of

control parameters and selecting genetic operators to

which the algorithm performance is often very sensitive.

The parameter setting is problem-specific task; people

from other domains often require the consultation of EA

experts for proper setting in their problems. For this

reason, automatic parameter and operator configuration

has been a very important and active research topic in

the EA community [19].

A classification proposed in [17] classifies parameter

setting into two types. One is for parameter tuning and

the other is for parameter control. The former is a static

approach that calculates the parameter values based on

statistics gathered from several past runs that remain

fixed while solving for a new instance. Parameter

control methods dynamically adjust the parameter

values at run-time for good performance.

These two problems are clearly related, but carry

important differences. Theoretically speaking, the

tuning problem is the stationary while the control

problem is the non-stationary side of the same coin.

From a practical perspective, tuning is indispensable for

EA users, since no EA can be executed without giving

some value to its parameters. There are very good

parameter tuning methods developed and published in

the last decade and the EC community is increasingly

adopting them. For parameter control, the situation is

quite different. The control problem is yet to be solved

although the various advantages of control have been

already identified in the past:

o It allows the EA to use appropriate parameter

values in different stages of the search process. (e.g.,

search by big jumps in the beginning, fine tune the

near-optimal solutions by small steps in the last stage of

the search.)

o It allows the EA to adjust to the changing fitness

landscapes when facing dynamic problems.

o It allows the EA to collect information about the

fitness landscape during the search and use the

accumulating information to improve performance in

later stages.

o Using a parameter control mechanism also solves

the tuning problem as it relieves the user from the task

of choosing parameter values.

Parameter control methods can be further classified

as deterministic control, adaptive control and

self-adaptive control depending on the manner of

adaptation.

Deterministic methods are uninformed; they follow a

predetermined problem-specific schedule (or rules) for

assigning new parameter values. Parameter values are

predefined functions of time. Adaptive methods are

informed as they receive feedback from the previous EA

runs and assign values based upon that feedback.

Parameter values are predefined functions of the whole

history of the run. Self-adaptive methods encode

parameter values in the genetic contents (in the

chromosomes) along the solutions and allow them to

co-evolve with the problem solutions. Note that this

notion of self-adaptation is generic. It can concern any

parameter and its use is not limited to denote the

specific strategy used in ES to control the mutation step

sizes.

While deterministic control suffers from the same

problems as static control (finding the optimal

pre-defined functions would require parameter tuning),

self-adaptive and adaptive control have met some

success over the years, but only in very specific

domains, like in the framework of continuous parameter

optimization.

One key objective of Parameter Control is thus to

propose generic methods for the control of

representation independent parameters: i) population

size, ii) selection mode and parameters, iii) variation

operator probabilities.

III. ADAPTIVE VARIATION OPERATOR

AOS is an increasingly popular approach to

adaptively select operators for generating a new solution

during the search. It calculates the application rates of

3

Fig. 1 Illustration of the FIFO sliding window structure

different operators in an online manner based on their

recent performances within an optimization process.

AOS involves two major tasks: the credit assignment

and the operator selection. The former defines how to

reward an operator based on its recent performance

(usually based on fitness improvements) in the search

process, while the latter uses these rewards to decide

which operator should be applied next [18,19]. The

combination of this operator selection and the credit

assignment schemes constitutes the AOS method named

fitness-rate-rank-based multi-armed bandit FRRMAB

[19]. The incorporation of AOS in MOEAs has not been

very successful so far; the main reason being the

difficulty in quantitatively measuring the fitness

improvement in most Pareto-dominance based MOEAs.

Multiobjective evolutionary algorithm based on

decomposition (MOEA/D) decomposes a MOP into a

number of scalar optimization subproblems and

optimizes them simultaneously. Thus, it is natural and

feasible to use AOS in MOEA/D. We elaborate several

important issues in using FRRMAB in MOEA/D.

A. Credit Assignment
The most commonly used metric in credit assignment

for measuring the quality of an operator is based on the

fitness improvement obtained by a new solution,

compared with a given baseline solution. In [20], for

instance, the best solution of the current population is

considered baseline, while in [21] the offspring’s parent

is used for comparison. In credit assignment, one needs

to address the following two issues:

a) how to measure the impact in the search process

caused by the application of an operator;

b) how to assign an appropriate credit value to an

operator based on this measured impact.

As for the first issue, the most commonly used

approach is to directly use the raw values of the fitness

improvements caused by the recent uses of the operator

under assessment. However, the range of raw fitness

improvements varies from problem to problem and even

at the different stages of an optimization process. It is

common that the raw fitness improvement value is

much larger at early stages than at later ones. Therefore

the direct use of raw fitness improvement could

deteriorate the algorithm’s robustness. To alleviate this

problem, method proposed in [19] uses the fitness

improvement rates (FIR). More specifically, the FIR

achieved by an operator i at time point t is defined as

Where pfi,t is the fitness value of the parent, and cfi,t is

the fitness value of the offspring.

A sliding window with fixed size W is used to store

the FIR values of the recently used operators. It is

organized as a first-in, first-out (FIFO) queue, i.e., the

FIR value of the most recently used operator is added at

the tail of the sliding window, while the oldest record

(the item at the head of the queue) is removed to keep

the window size constant. Fig. 1 [19] illustrates the

structure of a sliding window. Each slot in the sliding

window stores two components:

1) the index of the operator op used;

2) its FIR value.

The major reason for using the sliding window is that,

in dynamic AOS environments, the performance of an

operator in a very early stage may be irrelevant to its

current performance. The sliding window ensures that

the stored FIR information is for the current situation of

the search.

To address the second issue set at the outset of this

subsection, we first compute Rewardi, the sum of all

FIR values for each operator i in the current sliding

window. Then, we rank all these Rewardi values in a

descending order. Let Ranki be the rank value of

operator i, inspired by other recently proposed

rank-based credit assignment schemes [22, 23], and to

give more chances to the best operators, we introduce a

decaying factor D ∈ [0, 1] to transform Rewardi to

Decayi = D
Ranki

× Rewardi (1)

Then, we assign the following credit value to operator

i:

Clearly, the smaller the value of D, the larger the

influence for the best operator. Fig. 2 [19] illustrates

FRR versus Rank with three different values of D in a

case of 15 distinct rank values.

B. Operator Selection

Guided by the reward values, operator selection

methods select operators for generating new solutions.

The operator selection problem can be regarded as an

instance of the Exploration vs Exploitation dilemma:

one should exploit the operators-set by selecting good

operators as often as possible, while also doing some

exploration to give chances to poor operators since they

may become better in the future search.

4

Fig. 2 Comparison between different decaying

mechanisms

f2

 f1

Fig. 3 Pareto-front for 2-objective problem with

crossover probability pc=0.85

f2

 f1

Fig. 4 Pareto-front for 2-objective problem with

crossover probability pc=0.90

f2

 f1

Fig. 5 Pareto-front for 2-objective problem with

crossover probability pc=0.95

Bandit-based operator selection has received much

attention in recent studies. A multi-armed bandit

involves K independent arms (equivalent to variation

operators or strategies in the AOS literature). The i-th

arm is characterized by its (fixed, unknown) reward

probability pi (pi ∈ [0, 1]). An optimal arm selection

strategy is the one that maximizes the cumulative

reward along time. Many MAB algorithms have been

proposed to tackle this problem. Most of the recent ones

are based on the UCB algorithm [24], which provides

asymptotic optimality guarantees. In an UCB-based

MAB algorithm, the ith arm has an empirical quality

estimate and a confidence interval that depends on

the number of times ni it has been tried before. At each

time point t, the arm maximizing the following function

is selected:

The scheme in [19] is similar to the original UCB

algorithm [24]. The major difference is that we use FRR

values as the quality index instead of the average of all

the rewards received so far for an operator. In addition,

ni indicates the number of times operator i has been

selected in the recent W applications. It is worth noting

that no operator has yet been applied at the beginning of

the search; thus, we give each operator an equal chance

to be selected in this case. FRRMAB is not employed

until each operator has been applied at least once.

Recent empirical studies [19] on five-objective

instances of test problems (WFG1, WFG8 and WFG9)

have shown that FRRMAB has improved the abilities of

MOEA/D for dealing with MaOPs.

IV. EXPERIMENTAL STUDIES

The impact of parameter variation was investigated in

MATLAB on a two-objective minimization problem.

The two objectives on two decision variables x1 and x2

are defined as follows:-

f1(x) = x1
4
 – 10x1

2
 + x1x2 + x2

4
 – x1

2
x2

2

f2(x) = x2
4
 – x1

2
x2

2
 + x1

4
 + x1x2

The parameter selected for variation was crossover

probability, pc. The pareto-fronts obtained for different

values of pc are shown below in figures 3, 4 and 5. The

graphs indicate that pareto-front with pc=0.90 is more

regular with less fluctuations than the front at pc=0.85

and pc=0.90. However the appropriate value of pc

depends mainly on the nature of the problem.

5

V. CONCLUSION

This paper has emphasized the importance of

parameter control and adaptive selection of variation

operators for efficiently solving many-objective

optimization problems. The self-adaptive and adaptive

parameter controls have shown successes in recent past.

Adaptive operator selection on the other hand involves

credit assignment and operator selection. Numerous

techniques have been proposed for both these processes

in AOS. This paper studied the issues in incorporating

FRRMAB in MOEA/D. In summary, the AOS approach

needs further enhancement and sophistication.

Furthermore it still needs to be applied to the

state-of-the-art MaOPs including NSGA-III [6] (and its

variants) and indicator-based MOEAs.

REFERENCES

[1] Ishibuchi, Hisao, Noritaka Tsukamoto, and Yusuke

Nojima. "Evolutionary many-objective optimization: A

short review." IEEE congress on evolutionary

computation. 2008.

[2] Kukkonen, Saku, and Jouni Lampinen.

"Ranking-dominance and many-objective

optimization." Evolutionary Computation, 2007. CEC

2007. IEEE Congress on. IEEE, 2007.

[3] Deb, Kalyanmoy. "Multi-objective optimisation using

evolutionary algorithms: an

introduction." Multi-objective evolutionary optimisation

for product design and manufacturing. Springer London,

2011. 3-34.

[4] Adra, Salem F., and Peter J. Fleming. "Diversity

management in evolutionary many-objective

optimization." Evolutionary Computation, IEEE

Transactions on 15.2 (2011): 183-195.

[5] Rodrigo Silva et al. Visualization and Analysis of

Trade-offs in Many-Objective Optimization: A Case

Study on the Interior Permanent Magnet Motor Design.

In: Compumag 2015, 2015, Montreal. Proceedings of

the Compumag. 2015.

[6] Deb, Kaushik, and Himanshu Jain. "An evolutionary

many-objective optimization algorithm using

reference-point-based nondominated sorting approach,

part I: Solving problems with box

constraints." Evolutionary Computation, IEEE

Transactions on 18.4 (2014): 577-601.

[7] Chand, Shelvin, and Markus Wagner. "Evolutionary

many-objective optimization: A quick-start

guide." Surveys in Operations Research and

Management Science 20.2 (2015): 35-42.

[8] Ngatchou, Patrick, Anahita Zarei, and M. A.

El-Sharkawi. "Pareto multi objective

optimization." Intelligent Systems Application to Power

Systems, 2005. Proceedings of the 13th International

Conference on. IEEE, 2005.

[9] Mitchell, Melanie. An introduction to genetic

algorithms. MIT press, 1998.

[10] Luke, Sean. "Essentials of metaheuristics. Lulu,

2009." Available for free at http://cs. gmu.

edu/sean/book/metaheuristics/. There is no

corresponding record for this reference (2011).

[11] Yang, Xin-She. Engineering optimization: an

introduction with metaheuristic applications. John

Wiley & Sons, 2010.

[12] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.

Lamont, Evolutionary Algorithms for Solving

Multi-Objective Problems. Norwell, MA: Kluwer, 2002,

ISBN 0-3064-6762-3.

[13] Deb, K., 2011. Multi-Objective Optimization Using

Evolutionary Algorithms: an Introduction, Department

of Mechanical Engineering, KanGAL Report Number

2011003, Indian Institute of Technology Kanpur.

[14] K. Deb, Multiobjective Optimization Using

Evolutionary Algorithms. Chichester, U.K.: Wiley,

2001.

[15] Mkaouer, Mohamed Wiem, et al. "High dimensional

search-based software engineering: finding tradeoffs

among 15 objectives for automating software

refactoring using NSGA-III." Proceedings of the 2014

conference on Genetic and evolutionary computation.

ACM, 2014.

[16] Tan, Kay Chen, et al. "Balancing exploration and

exploitation with adaptive variation for evolutionary

multi-objective optimization." European Journal of

Operational Research 197.2 (2009): 701-713.

[17] Eiben, Agoston Endre, Robert Hinterding, and Zbigniew

Michalewicz. "Parameter control in evolutionary

algorithms." Evolutionary Computation, IEEE

Transactions on 3.2 (1999): 124-141.

[18] DaCosta, Luis, et al. "Adaptive operator selection with

dynamic multi-armed bandits." Proceedings of the 10th

annual conference on Genetic and evolutionary

computation. ACM, 2008.

[19] Li, Ke, et al. "Adaptive operator selection with bandits

for a multiobjective evolutionary algorithm based on

decomposition." Evolutionary Computation, IEEE

Transactions on 18.1 (2014): 114-130.

[20] Davis, Lawrence. "Adapting operator probabilities in

genetic algorithms."proc. 3rd International conference

on genetic algorithms. 1989.

[21] Gong, Wenyin, Álvaro Fialho, and Zhihua Cai.

"Adaptive strategy selection in differential

evolution." Proceedings of the 12th annual conference

on Genetic and evolutionary computation. ACM, 2010.

[22] Fialho, Álvaro, Marc Schoenauer, and Michèle Sebag.

"Toward comparison-based adaptive operator

selection." Proceedings of the 12th annual conference

on Genetic and evolutionary computation. ACM, 2010.

[23] Fialho, Alvaro, et al. "Comparison-based adaptive

strategy selection with bandits in differential

evolution." Parallel Problem Solving from Nature,

PPSN XI. Springer Berlin Heidelberg, 2010. 194-203.

[24] Auer, Peter, Nicolo Cesa-Bianchi, and Paul Fischer.

"Finite-time analysis of the multiarmed bandit

problem." Machine learning 47.2-3 (2002): 235-256.

[25] Zitzler, Eckart, and Simon Künzli. "Indicator-based

selection in multiobjective search." Parallel Problem

Solving from Nature-PPSN VIII. Springer Berlin

Heidelberg, 2004.

